Growth Kinetics of GaN grown by Molecular Beam Epitaxy using Ga and Ammonia

the public portion of a thesis defense given at the UNIVERSITY OF MINNESOTA by

Ruediger Held

in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Adviser: Prof. Philip I. Cohen

February 15, 1999

Acknowledgements

Philip I. Cohen, Adviser

Amir M. Dabiran Devin E. Crawford Andrew M. Johnston Sean M. Seutter Brian E. Ishaug Alexander Parkhomovsky

Bulk GaN Crystals

Polish Academy of Sciences High Pressure Research Center

> Grzegorz Nowak Izabella Grzegory Sylwester Porowski

Funding

AFOSR, ONR, NSF, U of MN: ECE and MatS

Motivation

- GaN is wide bandgap semiconductor: blue LED, blue Laser, UV detector
- MBE offers better (*in situ*) control over growth than MOCVD
- very little was known about growth mechanism

Preview

- instrumentation
- background
- develop model for surface reactivity
- develop model for growth
- surface morphology
- conclusions

Molecular Beam Epitaxy (MBE)

Samples and Mounting

1 mm grid

2 1/4 inch diameter

Desorption Mass Spectroscopy (DMS)

^{*} R. Held, D.E. Crawford, A.M. Johnston, A.M. Dabiran, and P.I. Cohen, *Journal of Electronic Materials*, **26**, 272 (1997)

Background

- GaN{0001} is polar
- bulk GaN has both polarities
- polarities can be distinguished + *
- GaN on sapphire either polarity *
- focus on GaN(000<u>1</u>) or GaN-B
- RHEED showed two possible surface terminations on GaN-B, after Ga or NH₃ only exposure [#]
- ⁺ A.R. Smith, R.M. Feenstra, D.W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, J.E. Northrup, *Appl. Phys. Lett.*, **72**, 2114 (1998)
- * R. Held, G. Nowak, B.E. Ishaug, S.M. Seutter, A. Parkhomovsky, A.M. Dabiran, P.I. Cohen, I. Grzegory, and S. Porowski, *J. Appl. Phys.*, in press
- [#] R. Held, D.E. Crawford, A.M. Johnston, A.M. Dabiran, and P.I. Cohen, *Surf. Rev. Lett.*, **5**, 913 (1998)

Surface Reactivity gallided / nitrided

- nitrided surface becomes gallided after Ga exposure
- approx. 0.5-1.0 ML of Ga adsorb strongly
- Ga adsorbs weakly on gallided (\boldsymbol{q}_{w})

AFM Surface Morphology

nitrided surface

$$\boldsymbol{q}_{s} = \boldsymbol{q}_{s,o}$$

gallided surface

 $\boldsymbol{q}_s = 1$

anneal gallided in NH₃

1 µm scans

Basic Model Assumptions

first goal: develop quantitative model without NH₃

Fast Weak State

- near instantaneous rise suggests fast weak state
- drop in "knee" suggests states proportional to \boldsymbol{q}_{s}
- drop <>0 suggests desorption overlaps with \boldsymbol{q}_{w}

"galliding" Model

$$\frac{\mathrm{d}\boldsymbol{q}_{\mathrm{s}}}{\mathrm{d}t} = (1 - \boldsymbol{q}_{\mathrm{s}})\boldsymbol{a} F_{\mathrm{Ga}} + \boldsymbol{q}_{\mathrm{w}}(1 - \boldsymbol{q}_{\mathrm{s}})\boldsymbol{k}$$
$$\frac{\mathrm{d}\boldsymbol{q}_{\mathrm{w}}}{\mathrm{d}t} = \boldsymbol{q}_{\mathrm{s}}F_{\mathrm{Ga}} - \boldsymbol{q}_{\mathrm{w}}/\boldsymbol{t} - \boldsymbol{q}_{\mathrm{w}}(1 - \boldsymbol{q}_{\mathrm{s}})\boldsymbol{k}$$

 $F_{\rm d} = (1 - \boldsymbol{a}) F_{\rm Ga} (1 - \boldsymbol{q}_{\rm s}) + \boldsymbol{q}_{\rm w} / \boldsymbol{t}$

Fitting Procedure

Curve Fitting

Sample: $q_{s,o} = 0.23 \text{ ML}$ a = 0.45k = 35 ML/s

Results:

 $q_{s,o} = 2.62 - 0.00235 T (ML)$ a = 0.5 $k = 1.2 \times 10^7 e^{-1.2 (eV)/kT} (ML/s)$

- $F_{Ga} >> F_{NH3}$ like gallided surface, unreactive
- $F_{NH3} >> F_{Ga}$ like nitrided surface, reactive
- abrupt growth regime crossover from step flow to island nucleation (AFM, RHEED)

Abrupt Crossover

- would like to expand model to include growth
- model has to feature an abrupt crossover

Growth Terms

excess NH_3 1 µm scans excess Ga

$$\frac{\mathrm{d}\boldsymbol{q}_{\mathrm{s}}}{\mathrm{d}t} = (1 - \boldsymbol{q}_{\mathrm{s}})\boldsymbol{a} F_{\mathrm{Ga}} + \boldsymbol{q}_{\mathrm{w}}(1 - \boldsymbol{q}_{\mathrm{s}})\boldsymbol{k}$$

excess NH₃:
$$-(\boldsymbol{q}_{\mathrm{s}} - \boldsymbol{q}_{\mathrm{s,o}})^{x}(1 - \boldsymbol{q}_{\mathrm{s}})^{x}F_{\mathrm{N}}$$

excess Ga:
$$-f(1 - \boldsymbol{q}_{\mathrm{w}})(\boldsymbol{q}_{\mathrm{s}} - \boldsymbol{q}_{\mathrm{s,o}})F_{\mathrm{N}}$$

- in both limits one or other term goes to zero
- excess NH₃: island perimeter growth (x = 1/2)
- excess Ga: step edge growth with efficiency parameter *f* and inhibitation * term

^{*} D.E. Crawford, R. Held, A.M. Johnston, A.M. Dabiran, P.I. Cohen, *MRS Internet Journal NSR*, **1**, 12 (1996)

Crossover Modeling

Crossover Results

- best fit obtained with x = 2
- crossover relatively independent of f

Growth Rate Data and Model

- growth rates can be modeled qualitatively
- quantitative match not very good (depends on f)
- inhibitation term necessary
- qualitative agreement with RHEED data

Conclusions

- two surface terminations: gallided = unreactive nitrided = reactive
- gallided surface has weakly adsorbing site, surface diffusion
- nitrided surface is gallided by chemisorption via an intrinsic physisorption precursor state
- terminations and growth mode: gallided = step flow nitrided = island nucleation
- rate equation growth model: qualitatively good quantitative shortcomings